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Abstract 
This  paper d t h b e s   f u z z y  logic techniques used in a  hi- 

erarchical  behavior-based  architecture fo r  robot navigation. 
An architectural  feature  for  threshold  activation of fuzzy- 
behaviors  is  emphasized,  which  is  potentially  useful  for  tun- 
ing  navigation  performance in real world applications.  The 
target  application  is  autonomous local navigation of a  small 
planetary  rover.  Threshold  activation of low-level  naviga- 
tion  behaviors  is  the  primary  focus. A preliminary  assess- 
men t  of its  impact  on local navigation  performance  is  pro- 
vided based on  computer  simulations. 

1 Introduction 
Recent literature  has  reported  numerous  applica- 

tions of fuzzy logic to challenging  problems in au- 
tonomous  control of electromechanical  systems.  In 
many cases, researchers  have  found  it beneficial to ad- 
dress  the  challenges  by  approaching  the  control  prob- 
lem  using multiple  special-purpose fuzzy  controllers, 
each  responsible for a  relatively  simple,  but  integral, 

fuzzy-behavior selection and  coordination  mechanism 
called behavior  modulation already  exists  in  the  ar- 
chitecture.  It is based on  a weighted  decision-making 
scheme that involves  scaling and  aggregation of fuzzy 
sets, which  represent  outputs of behaviors that  are ap- 
plicable in the  current  context.  In  prior research  based 
on  this fuzzy  control  architecture,  threshold  activation 
of behaviors  was  not  exploited.  This  paper  explores 
this  additional  architectural degree-of-freedom for po- 
tential  impacts on  local  navigation  performance.  It 
is intended  as  a  preliminary  investigation of benefi- 
cial effects derived from  threshold-based  execution of 
fuzzy-behaviors. The fuzzy  behavior-based  controller 
is briefly described,  followed by a  proposed  strategy for 
behavior  activation using fixed thresholds.  The pro- 
posed approach is then  applied to  autonomous  local 
navigation of a  small  planetary rover. The effects of 
threshold  activation  are  demonstrated  via  comparative 
behavioral  responses of the rover in  computer  simula- 
tions.  Finally,  conclusions  are  stated. 

aspect of the  problem. A common issue associated 
with such implementations is the  determination of a 2 Rule-based Behavior Hierarchy 
suitable  mechanism for selecting  and/or  coordinating 
the  most  appropriate  controller(s) for a  given system 
context.  In  addition,  it is desirable to embed  some ca- 
pacity for tuning  the  behavior of the  system when it is 
applied  in  real  world  operations. 

This  paper  describes  an  architecture for autonomous 
control  that  employs  multiple fuzzy  controllers. The 
architecture  has proven useful on  mobile  robots for 
realizing  behavior-based  local  navigation,  i.e. sensor- 
based  navigation  without  the use of a  global map. 
As designed,  each  controller  implements  a  fuzzy logic- 
based  motion  control  behavior or decision-making be- 
havior that is integral  to  the  navigation  task. A 
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The  functionality  required for autonomous  naviga- 
tion  behavior  can  be  distributed  across  a  finite  num- 
ber of special-purpose  task-achieving  behaviors. An 
effective arrangement of behaviors  as  a  hierarchy of 
distributed fuzzy  rule-bases  was  recently  proposed for 
autonomous  navigation  in  unstructured  environments 
[l]. A collection of primitive behaviors  residing at  the 
lowest level are  encoded  as  fuzzy  rule-bases  with dis- 
tinct  control policies governed by fuzzy inference. They 
are  typically  simple  and  self-contained  behaviors that 
serve a single purpose  while  operating in a  reactive 
or reflexive fashion.  Examples  include  simple  hazard 
avoidance and  motion  towards  commanded  sub-goals. 
Primitive  behaviors  perform  mappings  from different 
subsets of the sensor suite  to  common  actuators.  They 
also function  as  building blocks for higher-level coor- 



dination  behaviors, referred to as composite  behaviors, 
such  as goal-seeking or route-following [l]. Hereafter, 
references to primitive  and  composite fuzzy-behaviors 
will be  abbreviated  as p-behaviors and e-behaviors, re- 
spectively. 

Let X and U be  input  and  output universes of dis- 
course of a p-behavior  with a rule-base of size N .  We 
describe the generic fuzzy if-then  rule  as follows 

I F  2 is Ai T H E N  u is B i  (1) 

where x and u represent  input  and  output fuzzy lin- 
guistic  variables,  respectively, and Ai and B i  ( i  = 
1 ,2 ,  . . . , N )  are fuzzy subsets  representing  linguistic 
values of x and u. In  the rover controller, x refers 
to sensory data or  goal  information; u refers to set- 
points  for  motor  control velocities.  P-behaviors be- 
haviors  consist of a finite  set of such  rules.  Formally, 
the  output of the  i-th fuzzy rule  is  represented by a 
fuzzy relation, & E X x U ,  which is a fuzzy set  itself. 
Moreover, the  output of a fuzzy rule-base can  be char- 
acterized  as a single fuzzy relation, p ,  which is a union 
of  fuzzy relations U i ,  i = 1 , 2 ,  . . . , N .  Outputs of a p- 
behavior,  then,  can also be  represented  as fuzzy sets. 
In  our  application  they  are fuzzy sets of recommended 
wheel velocities  for the  motors  to achieve.  Alterna- 
tively, they  could  represent vehicle steering  and  speed. 

2.1 Fuzzy-behavior modulation 
One way to  coordinate,  or resolve conflicts be- 

tween,  several recommendations  is to aggregate them 
via fuzzy  union and defuzzify the result to yield a  crisp 
control  action.  However,  in  many  cases,  such  fusion of 
recommendations  does  not  provide sufficient decision- 
making flexibility for  autonomous  control.  What is 
needed  is a mechanism  for  controlling  the  amount of 
influence a particular  behavior  has  on  the  control ac- 
tion  in a context-dependent way. The  architecture pro- 
vides this flexibility  by incorporating a scheme  called 
behavior  modulation, which we define as  the  continu- 
ous  adjustment  or  adaptation of behavior  activation 
levels in a multi-behavior or multi-agent  system  [l]. 
Behavior  modulation is achieved  by weighted decision- 
making, which  is  regulated through  assignment of acti- 
vation levels to each  p-behavior.  Activation levels gov- 
ern  the  extent  to which  each  behavior  is  applicable  in 
the  current  context  as perceived from  goal  information, 
sensory input,  and  internal  state.  The rover's  compos- 
ite  behaviors serve as  meta-rule-bases  in  which  individ- 
ual fuzzy  rules  have  weighting  consequents that specify 
the  instantaneous  activation level of p-behaviors. Here- 
after,  rules  that  modulate  the  activity of p-behaviors 
in  this way will be referred to  as  activation rules. The 
activation level, a ,  of a p-behavior  is specified in  the 

consequent of activation  rules of the  form 

where Ai is defined as  in  (1). D i  is a fuzzy  subset  rep- 
resenting  the  linguistic value  (e.g. high,  low, etc) of 
the  behavior's  activation level to  the  situation prevail- 
ing  during  the  current  control cycle. It is  defined over 
the closed unit  interval, [0, 11. In  general, a c-behavior, 
c, will include  activation  rules  such  as (2) for  each p- 
behavior p modulated by e. Thus, for  all p ,  ap E [0,1] 
is determined by fuzzy  inference as  the  output of an 
associated  c-behavior. 

Let I us  denote  the fuzzy output of primitive  behavior 
p as ,Bp, and  its  corresponding  activation level as lyp. 

Let P be  the  set of all  p-behaviors  in a given  behav- 
ior  hierarchy. Then  the modulated fuzzy output of p 
is given  by py = (ap . p P ) .  Modulated fuzzy outputs 
for  all p are  aggregated  using  an  appropriate  t-conorm 
to produce  the  resultant  output of the behavior  hier- 
archy. The  arithmetic  sum  t-conorm  has been chosen 
for this  purpose since it  facilitates  enforcement of the 
weighted decision-making intended  in  the  philosophy 
the  proposed  approach.  The  arithmetic  sum will be 
denoted by the  symbol, W. Finally, if  we denote  the 
output fuzzy set of the behavior  hierarchy  as p ~ ,  then 
it  can  be  computed  as follows 

BH = ap ' B p .  (3) 
PEP 

The crisp  control output, u* E U ,  which  serves as  the 
velocity  set-point  input  for  the  wheel  motors,  is  ccm- 
puted by the Center-of-Sums  defuzzification [a] of ,BH. 

This expression is the nonlinear  input-output  mapping 
of the fuzzy-behavior  hierarchy  which adapts  dynam- 
ically due  to  continuous  fluctuations  in l y p ,  V p  E P .  
In  this  procedure,  multiplication  by ap expresses the 
relative applicability of a p-behavior to  the  current  situ- 
ation, while the  scalar ap itself  represents the weightof 
the behavior  in  the  aggregated  control  decision.  Oper- 
ators  other  than  multiplicationcan  be used to achieve a 
similar effect. Yager [3] refers to such  operators  as  im- 
portance  transformations  and  suggests a general  class 
of them for both  t-norm  and  t-conorm  aggregations. 

This  coordination  method  is  attractive  because  it al- 
lows robots  to  exhibit  controlled  behavioral responses 
throughout a continuum between cooperation  and 
competition.  In  any  control cycle, resultant  control 
action is a consensus of controls  recommended  by  all 



applicable  behaviors.  This is in  contrast to non-fuzzy 
behavior  arbitration  schemes, which  typically  employ 
fixed priorities that allow  only  one  active  behavior  dur- 
ing  a  given  control cycle. The behavioral  consensus 
of control  facilitates  smooth  execution of motion com- 
mands.  This  strategy is particularly  suitable  in  the 
context of fuzzy-behavior  hierarchies. 

3 Threshold Activation 
In  a single fuzzy  rule-base,  the firing of a  rule  pro- 

duces  a  fuzzy  set  derived  from  the  rule  consequent, 
the size of which is related to  the firing strength of 
the  rule.  The  resulting  output fuzzy  set of the  rule 
can  be viewed as  a  measure of stimulus induced by 
the  rule  inputs.  In recent  work, Maeda  et  al [4] pro- 
pose an effective modification of Zadeh’s  fuzzy algo- 
rithm [5] in which the firing of individual rules is  gov- 
erned  by  adjustable  thresholds.  In  systems comprised 
of multiple fuzzy  controllers,  this  concept  can also be 
effectively applied at  the coarser granularity of rule- 
bases.  This was  alluded to in [5] as  a possible mode 
of execution  used  by  humans to execute  a  set of fuzzy 
instructions;  there,  it is referred to  as nondeterminis- 
tic  execution  with  threshold. For behavior-based sys- 
tems,  this  translates  into  a  means for tuning  individ- 
ual  systems of multiple  behaviors. The thresholds  im- 
posed on  behavior  activation  allow  filtering of unde- 
sirable  inter-behavioral influences that  might be  ob- 
served during  system  testing  or  operation. As a  prac- 
tical  utility,  thresholds  are  the  tunable  “knobs” of the 
system  that  permit  performance refinement in differ- 
ent  operating  environments. Such flexibility is desir- 
able for real  world applications of mobile  robots since 
the  performance of pre-programmed  behavior  can vary 
from  environment to environment  (e.g.  sparsely  clut- 
tered to densely cluttered  domains).  This was attested 
to in a  recent analysis of variations  in  expected  nav- 
igation  performance of rovers  based on different ob- 
stacle  distributions  and vehicle size [B]. Thus  far, re- 
search  proposing  similar  fuzzy  coordination  strategies 
as  that described  above  has  not  emphasized  the  utility 
of thresholds in this  manner. 

Herein, we attempt  to elevate  the  notion of stimulus 
from  the  rule level to  the level of rule-bases. Like fuzzy 
rules, fuzzy  rule-bases  (behaviors in our case) also pro- 
duce  an  output fuzzy set, which  results  from  fuzzy in- 
ference. In an analogous  manner,  the  output fuzzy 
set of a  behavior  can  be viewed as  a  stimulus induced 
by the  behavior  input(s).  In  general,  the  stronger  the 
stimulus,  the  more responsive the  behavior. However, 
the  hierarchy  determines  the  ultimate  activation level 
of the  behavior  based on its  current  applicability  as 
described  above. The  modulated fuzzy output  that 

results is a  measure of the  behavior’s  stimulus  from 
the  point of  view  of the  hierarchy.  It is this  stimu- 
lus that we impose  activation  thresholds  upon for each 
p-behavior.  Activation  strategies  can  be  formulated 
based  on the  consideration of the  a-cuts of behavior 
output fuzzy sets  relative to fixed activation  thresh- 
olds.  Note that  to avoid  confusion with our use of the 
symbol a to  designate  activation levels, we will refer 
to  the  a-cuts of fuzzy  set theory  as 0-cuts  herein.  A 
%-cut of a  fuzzy set, e, defined  over  a  universe U ,  is 
the  crisp  set 68 defined as 

6 8  = { x  E XIp&) 2 0) (5) 

where PC(.) : X -+ [0, 13 is a  membership  function 
defining 6. To  utilize  0-cuts for implementing  thresh- 
old  behavior  activation, we consider  the  modulated 
fuzzy output of the  behavior, By. If the  &cut of the 
modulated fuzzy output is null,  then  the  system rec- 
ommends  that  the level of activation for the  associated 
behavior is zero. That is, if a  threshold 0 E [0,1] is 
imposed  on  a  behavior p ,  its  modulated fuzzy output 
is augmented  to  determine  its  activation  according  to 

where 0 denotes  the  null fuzzy set.  In  the  interest 
of computational efficiency, the  implementation avoids 
unnecessarily computing  the  modulated fuzzy  set to 
determine  its  @-cut.  Instead, we compare  its height 
to  the  threshold so that  the behavior is activated if 
ap . max(pLpM) 2 0.  The  operational  premise,  then, is 
that behaviors  are  activated if their  stimuli exceed their 
activation  thresholds.  Behavior selection is a  special 
case of this  approach  that  occurs when the  stimulus of 
a  p-behavior  exceeds  its  activation  threshold  while  the 
stimuli of other  p-behaviors is zero or below threshold. 

P 

4 Rover Local Navigation 

This  preliminary  investigation of threshold  activa- 
tion is ultimately  geared  towards  applications to plan- 
etary rover navigation.  Autonomous rovers  designed 
for planetary surface exploration  must  be  capable, at  
least, of point-to-point  local  navigation in the presence 
of varying  obstacle  distributions,  surface  characteris- 
tics,  and  hazards.  Often  the  navigation  task is facili- 
tated by awareness of a series of waypoints  (sub-goals), 
furnished  by  human  operators or a path  planner, which 
lead to designated  goals.  In  some  cases,  control  must 
be  achieved without  the  luxury of continuous or fre- 
quent  remote  communication between an  Earth-based 
mission  control station  and  the  rover. Rover autonomy 



goal-seek 

Figure 1: Behavior  hierarchy for local navigation. 

capabilities  must  be provided  under significant con- 
straints  on  power,  computation,  weight,  and  communi- 
cations.  To  further  increase  the  challenge,  many pop- 
ular  state-of-the-art processors that  enable advanced 
capabilities  in  laboratory research robots is infeasible. 
This is due  to  the  fact  that space flight projects  require 
the use of proven,  radiation-hardened,  or  otherwise 
space flight-qualified electronics. The meager availabil- 
ity of fast  and/or powerful  space-qualified  processors 
for on-board  computation fuels the need for efficient 
algorithms for implementing  the necessary  on-board 
autonomy.  Considering  these  and  other  constraints 
associated  with  rover  navigation,  a  fuzzy-behavior hi- 
erarchy for planetary rovers was suggested in [l]. A 
portion of that hierarchy  with sufficient functionality 
for local  navigation is shown in Fig. 1.  In  this fig- 
ure  the  behavioral  function of goal-seek (collision- 
free navigation to a  goal  location) is decomposed into 
the  two  p-behaviors  shown. The interconnecting cir- 
cles between the levels of hierarchy  represent  weights 
and  activation  thresholds  associated  with  p-behaviors. 
As its  name  implies,  the  purpose of the avoid-hazard 
behavior is to avoid hazards  such as large rocks. The 
go-to-waypoint behavior will direct  the rover to  tra- 
verse  a straight  line  trajectory  to  a specified waypoint. 
The goal-seek behavior  coordinates  these using be- 
havior  modulation  with  threshold  activation. 

As the  target  system for implementation of the be- 
havior  hierarchy, we consider  a class of miniature rovers 
being  developed for planetary  surface  exploration mis- 
sions. The  largest  dimension  (length) of an  existing 
prototype rover is 20cm, which  makes it 30% the size of 
the NASA rover, Sojourner, deployed on  Mars in July 
of 1997. The  utility of such  rovers for in-situ  surface 
exploration  as  individual  units  or  cooperative  teams 
is currently  being  investigated [6]. The vehicle under 
consideration is driven by  a  four-wheel  mobility  chas- 
sis that is differentially  steered.  Below, we demonstrate 
the effect of threshold  activation  on  a  simulated  model 
of this rover. The  primary  navigation sensing  capabil- 
ities considered  here  include  wheel odometry  and ob- 
stacle  range  sensing. 
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Figure 2: Successful path  without  thresholds. 

4.1 Preliminary  result 
Two  cases  are  considered, namely,  nominal  behav- 

ior hierarchy  design (0, = OVp) and  threshold  activa- 
tion.  Performance is predicted by simulated  naviga- 
tion in two distinct  environments  with  the  mere  intent 
of drawing  attention to performance  variations  that 
could  occur from  environment to environment. For 
the  sake of demonstrating  potential effects of thresh- 
old activation,  the  simulations  are  kept  simple  and  are 
implemented  with  relatively low fidelity. The first  en- 
vironment is a  “block  world” of several  obstacles. It 
represents an environment  wherein  the  local  navigator 
performs  quite well. The second environment is a field 
cluttered  with  randomly  distributed “rocks” of vari- 
ous sizes that  are considered obstacles/hazards for the 
rover. In  both cases, the  terrain is assumed  to  be two- 
dimensional.  This is an over-simplification of actual 
rover mission  scenarios in which  complex  motions  in 
the  third  dimension occur quite  frequently. However, 
this  assumption  still allows examination of obstacle ne- 
gotiating  capabilities of the local navigator. 

We have simulated  the  obstacle  range sensor cov- 
erage area to be limited to M 3m spanning  a  frontal 
field of view of M 2.5rad  (145 deg). A successful 
goal-seeking  result in  the  first  environment is shown 
in Fig. 2 where the  task is to navigate  from  initial 
pose ( x  y 4) = (Im 7m ;rad) to a  goal at location 
(9m 3m)’. The controller is executed in its  nominal 
configuration  with  zero  thresholds for p-behaviors in 
Fig. 1 ( d a h  = B,, = 0). This  result is representa- 
tive of point-to-point  navigation  performance  in  this 

‘Goal orientation is  not specified; it is assumed that simply 
rotating in place will satisfy such requirements. 
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Figure 3:  Failed path  without  thresholds. 
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Figure 4: Successful path  with  threshold  activation. 

environment for many  initial  states  and goals.  When 
the vehicle is  deployed in  the rock field, using the 
same  navigation  controller,  it  exhibits a  degradation 
in  performance  for  similar  tasks.  Fig. 3 shows a por- 
tion of the field in which a failure  occurs.  In the rock 
field, the  task is to  navigate  from (4m l m  2.44rad) to  
(7.5m  8.5m). With zero threshold  settings  the  nominal 
controller  reaches a deadlock  near  point ( 5 m   4 m )  and 
fails  advance  further  towards  the  goal. 

Thresholds of B,h = 0.5 and Bsw = 0.0025 were then 
applied to  govern activation of the p-behaviors for the 
case  in  Fig. 3. For this  example, these values were 
determined based on a sparse, but uniform,  trial-and- 
error  sampling of the space of thresholds. The suc- 
cessful path traversed  using  these  thresholds  is shown 
in  Fig. 4. In  this case,  threshold  activation  enables a 
consensus to  be reached that does not result in fail- 

ures such as deadlocks or  similar  artifacts of behavior 
interaction. Based on  these  preliminary  results, it is 
expected that threshold  activation would be useful for 
adjusting  performance  characteristics of systems  with 
even more  behaviors than used in  our  example. 

5 Conclusions 

Application of thresholds effects behavior-based 
controllers by altering  nominal  modes of interaction 
between p-behaviors.  Thresholds  have the effect of fil- 
tering  inter-behavioral influences that cause success in 
one  environment  and  performance  degradation  in  oth- 
ers.  Threshold  activation  appears useful as a means of 
tuning  system behavior  for  compliance  with different 
environments  with a minimum of controller  re-design. 
In lieu of applied  thresholds,  performance  refinement 
can  be achieved effectively with  a  thorough effort of 
tuning  membership  functions,  adjusting  scaling fac- 
tors,  and/or modifying  rules.  Where  feasible,  thresh- 
olds may be the simpler  approach  depending  upon the 
level of effort required. However, thresholds for behav- 
ior activation  can  be difficult to  choose. The difficulty 
increases with the  addition of behaviors to  the  system, 
in which case parameter  learning  algorithms  may  be 
the  better  option.  In  fact, on-line  learning  is a desir- 
able feature for robotic vehicles that  may  be deployed 
in varied operating  domains. However, they  can  be 
difficult to apply successfully, particularly  on resource- 
constrained  systems such as  planetary rovers.  Thresh- 
old  activation  is  an  acceptable  alternative to  the more 
ambitious  provision of an on-line  learning  capability. 
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